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Perspective Piece
Malaria and Parasitic Neglected Tropical Diseases: Potential Syndemics with COVID-19?
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Abstract. The COVID-19 pandemic, caused by SARS-CoV-2, have surpassed 5 million cases globally. Current
models suggest that low- and middle-income countries (LMICs) will have a similar incidence but substantially lower
mortality rate than high-income countries. However, malaria and neglected tropical diseases (NTDs) are prevalent in
LMICs, and coinfections are likely. Both malaria and parasitic NTDs can alter immunologic responses to other infectious
agents. Malaria can induce a cytokine storm and pro-coagulant state similar to that seen in severe COVID-19. Conse-
quently, coinfections with malaria parasites and SARS-CoV-2 could result in substantially worse outcomes than mono-
infections with either pathogen, and could shift the age pattern of severe COVID-19 to younger age-groups. Enhancing
surveillance platforms could provide signals that indicate whether malaria, NTDs, and COVID-19 are syndemics (syn-
ergistic epidemics). Basedon theprevalenceofmalaria andNTDs in specific localities, efforts to characterizeCOVID-19 in
LMICs could be expanded by adding testing for malaria andNTDs. Such additional testing would allow the determination
of the rates of coinfection and comparison of severity of outcomes by infection status, greatly improving the un-
derstanding of the epidemiology of COVID-19 in LMICs and potentially helping to mitigate its impact.

INTRODUCTION

The COVID-19 pandemic caused by SARS-CoV-2, a novel
coronavirus, has now reached all corners of the world, and
cases have surpassed 5 million.1 SARS-CoV-2 is currently
spreading in low- and middle-income countries (LMICs) that
experience the highest rates of malaria and neglected tropical
diseases (NTDs). Neglected tropical diseases refer to a di-
verse group of communicable diseases caused by parasites,
fungi, bacteria, and viruses that occur primarily in tropical and
subtropical climates; only parasitic NTDs are considered here
(Table 1). With many LMICs implementing movement restric-
tions or ordering their populations to stay at home to limit
SARS-CoV-2 transmission, the threat to essential health ser-
vices is likely to be immediate, causing delays to diagnosis
and treatment for other diseases, includingmalaria andNTDs.
During the Ebola epidemic in West Africa, there were sub-
stantial reductions in all-cause outpatient visits and patients
treated with antimalarial drugs2; modeling the potential for
similar disruptions in malaria control due to COVID-19 sug-
gests that there could be up to an estimated 769,000 deaths
due tomalaria in 2020 (approximately double the number seen
in 2018), mostly among children younger than 5 years.3

Countries working toward the elimination of malaria or NTDs
may face setbacks. Less obvious, but potentially important, is
the possibility of SARS-CoV-2 interacting with parasitic in-
fections and changing the rate of severe outcomes, particu-
larly among younger populations that have been relatively less
affected by COVID-19 to date.4

Under the assumption that public health and social dis-
tancing measures are used to mitigate the epidemic, the
modeled estimates for SARS-CoV-2 infection incidence rates
for LMICs, assuming comorbidity rates for all countries similar

to what was seen inWuhan, China, are projected to be around
600 infections per 1,000 population, similar to the rate antici-
pated for high-income countries. However, the mortality rate
for LMICs (∼2 per 1,000) is projected to be about half that of
the high-income countries (∼4 per 1,000).5 The difference in
predicted mortality rates between LMICs and high-income
countries is largely due to the younger age structure in LMICs;
in 2020, the median age in sub-Saharan Africa is 18.7 years,
compared with 38.4 years in China.6

Syndemics, or synergistic epidemics, occur when two or
more concurrent epidemics have a deleterious interaction,7

that is, when coinfections result in a worse overall outcome
than for either individual infection. There aremanyexamples of
important interactions between malaria and NTDs and other
infectious diseases. For example, malaria plays a role in
Epstein–Barr virus (EBV) infection, leading to Burkitt’s lym-
phoma by contributing to B-cell proliferation and increasing
EBV loads8; HIV-infected individuals experience a greater
frequency of severe malaria and increased HIV viral load fol-
lowing infection with Plasmodium falciparum9; several parasite–
HIVcoinfections are associatedwith increasedHIV viral load and
worsened immunosuppression10; and schistosome infections
are associated with increased transmission of HIV,11 whereas
deworming is associated with decreased HIV viral load and im-
provedCD4counts amongHIV-infected individuals.12 Biological
interactions between coinfecting pathogens could involve
changes in host pathology related to indirect immune effects.12

The interplay of coinfections hinges on several host–pathogen
factors and host immunodynamics.
Low- and middle-income countries in Africa suffer the

greatest burden of malaria; in 2018, there were more than 200
million cases per year, with an annual incidence of 229 per
1,000 persons.13 Despite substantial progress in reducing
malaria mortality over the past two decades, more than
400,000 malaria deaths (> 90% in sub-Saharan Africa) were
estimated to have occurred in 2018.13 Outside of Africa, India
has the greatest burden of malaria cases, accounting for 3%
of the global burden.13 Globally, NTDs affect more than 1
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billionpeople, especially those living inpoverty,whooften lack
access to clean water and adequate sanitation.14 Africa has a
disproportionate burden of NTDs and malaria, with a signifi-
cant geographical overlap.14,15 With rapid transmission of
SARS-CoV-2, many people in LMICs, particularly in Africa,
soon will be coinfected with SARS-CoV-2 and Plasmodium
spp. or one ormoreNTDpathogens; cases of COVID-19 in the
Africa regionwill soon surpass 100,000.1 Preexisting infection
with any of these parasitic infections may lead to changes
in susceptibility and/or severity of COVID-19. It is unclear
whether immunomodulation caused by malaria and NTDs will
bebeneficial or harmfulwhenhosts are coinfectedwithSARS-
CoV-2, but even small changes in the risk of severe outcomes
due to coinfections could result in substantial changes in the
impact and epidemiology of COVID-19 in LMICs.
SARS-CoV-2 infection. Common symptoms of infection

with SARS-CoV-2 include fever, cough, shortness of breath,
chills, myalgia, headache, sore throat, and new loss of taste or
smell16; the onset of symptoms generally occurs 4–5 days
after infection, although it can be as late as 14 days,17–19 and
not all infected people develop symptoms.20–22 Approxi-
mately a week after the development of symptoms, some
patients experience an acute worsening, with a pronounced
systemic increase of inflammatorymediators andcytokines.23

The severe systemic inflammatory response, referred to as a
“cytokine storm,” is characterized by markedly increased
levels of interleukins (IL) and tumor necrosis factor (TNF)-
alpha, and is associated with the development of acute re-
spiratory distress syndrome (ARDS).24 Among 72,314 cases
reported from China, 14%were rated as severe and 5%were
critical (respiratory failure, septic shock, and multiple organ
dysfunction or failure).17 Case fatality ratios (CFRs) ranged

from 2.3% to 7.2%, with higher CFRs among older adults
(8.0–12.8% among those aged 70–79 years and 14.8–20.2%
among those 80 years and older, versus £ 0.4% among
those younger than 50 years).17,25 Hypertension, diabetes,
cardiovascular disease, preexisting respiratory disease, and
obesity were common comorbidities26,27; in a meta-analysis
of 1,576 patients in China, all but diabetes and obesity were
associated with increased risk of severe disease.27

Potential Plasmodium spp.–SARS-CoV-2 interactions.
Of the five parasitic species that cause malaria in humans
(Table 1), P. falciparum accounts for most morbidity and
mortality, followed by Plasmodium vivax.13,15 Clinical illness
arises from asexual parasite replication within erythrocytes.
Infected erythrocytes lyse and release merozoites into the
circulation, causing activation of the immune system and
leading to the release of pro-inflammatory cytokines including
TNF-alpha, interferon-gamma, IL-6, and IL-12.28 This cas-
cade of cytokines leads to symptoms of uncomplicated
malaria, including periodic fever, which, if left untreated, can
progress to severe disease. Severe disease manifests as se-
vere anemia, respiratory failure, cerebral malaria, acidosis,
and renal failure. Children and infants are at greatest risk for
severemalaria; 67%of malarial deaths are estimated to occur
among African children younger than 5 years.13

As with COVID-19, cellular immune responses in malaria
involving the cytokine cascade must be carefully regulated to
achieve a protective response without causing adverse im-
pact on the host. Studies in malaria-endemic regions have
found that it is important to have a balance between a host
pro-inflammatory, Th1 response (e.g., TNF-alpha, IL-6, IL-12,
and interferon-gamma) and anti-inflammatory, Th2 response
(IL-4, IL-10, and others)29,30; severe manifestations of malaria

TABLE 1
Summary of principal characteristics of COVID-19, malaria, and key neglected tropical diseases

Characteristic COVID-19 Malaria Soil-transmitted helminths Schistosomiasis Chagas

Infectious agent SARS-CoV-2 Plasmodiumfalciparum,
Plasmodium vivax,
Plasmodium ovale,
Plasmodiummalariae,
and Plasmodium
knowlesi

Ascaris lumbicoides,
Trichuris trichiura, and
hookworm (Ancylostoma
duodenale and Necator
americanus)

Schistosoma mansoni, S.
haematobium, and S.
japonicum

Trypanosoma cruzi

Principal
symptoms
of clinical
disease

Fever, cough, and
shortness of
breath17,48

Fever Ascaris and hookworm:
transient pneumonitis.
Hookworm and Trichuris:
abdominal pain, nausea,
diarrhea, and anemia

Often asymptomatic;
acute infection
causes fever, cough,
abdominal pain, diarrhea,
hepatosplenomegaly,
and eosinophilia.

Fever, edema, malaise,
lymphadenopathy,
hepatosplenomegaly,
and chagoma (skin
nodule at the
inoculation site)

Severe clinical
disease
manifestation

Acute respiratory
distress
syndrome17

Cerebral malaria,
severe anemia, and
acute respiratory
distress syndrome15

Ascaris: acute intestinal
obstruction and
peritonitis. Hookworm:
anemia. Trichuris: colitis,
anemia, growth
restriction, and
dysentery73

S. mansoni and japonicum:
cirrhosis and portal
hypertention. S.
hematobium: hematuria
and squamous cell
carcinoma of the
bladder; rarely, central
nervous system
lesions15

Chronic heart disease,
dilated
cardiomyopathy,
megacolon, and
megaesophagus

Mode of
transmission

Person-to-person,
primarily by
respiratory
droplets

Mosquito vector Ascaris and Trichuris:
ingestion of eggs.
Hookworm: larvae
penetrate the
unprotected skin

Exposure to water
containing larval formsof
the parasite which
penetrate the skin

Triatomine vector

Age-group
most affected

Adults Children Children and pregnant
women

School-aged children for
infection and adults for
severe disease

Children for infection
and adults for
severe disease59
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are often due to excessive pro-inflammatory responses. The
sameappears tobe true in at least somecasesofCOVID-19,18

suggesting that a coinfection that also leads to excess pro-
inflammatory responses might result in more severe mani-
festations and poor prognosis.
Malaria-induced immunosuppression has also been ob-

served in many coinfections, significantly inhibiting immune
responses to the other infection (e.g., toSalmonella spp.).31,32

However, malaria-induced immunomodulation has been
shown to be protective against severemanifestations of some
respiratory viruses. In Kenya, hospitalized children diagnosed
with influenza and malaria were less likely to experience re-
spiratory distress than those with influenza alone.33 Coin-
fection with Plasmodium spp. could suppress the production
of pulmonary cytokines and decrease the recruitment of cel-
lular inflammatory components to the lungs, leading to re-
duced clinical symptoms and inflammation, as was found
during pneumovirus infections in amurine model. However, in
the murine model, viral control was also impaired, leading to
increased viral dissemination.34 Similar dynamics could occur
during Plasmodium–SARS-CoV-2 coinfection; malaria-induced
immunosuppression might lead to milder manifestations of
COVID-19 but simultaneously decrease viral control, potentially
increasing or sustaining viral loads, which could increase the
potential for viral transmission.
Age-related vulnerability to malaria and COVID-19. Sus-

ceptibility to malaria in highly endemic areas differs by age:
younger children are more vulnerable to malaria infections and
at a higher risk for severe malaria.13 For COVID-19, children are
less likely to developseveredisease,whereasolder populations
are disproportionately affected, with a higher risk of severe
disease and death.35 This may be due to the fact that children
are more likely to produce T-regulatory cytokines (IL-10, IL-23,
and IL-6) andhave less inflammation (becauseof their immature
immune systems) than older people who mount a more pro-
inflammatory cytokine cascade, potentially contributing to
pathogenesis.35 How age-related susceptibility to COVID-19
will play out in Africa, where many children are immunologically
stimulated by several infections in addition to malaria, is not
clear. Importantly, malaria infections in endemic areas fre-
quently result in chronic, afebrile disease in older children and
adults.36 It remains unknown whether this underlying infection
will alter susceptibility to or severity of COVID-19 in these pop-
ulations; it is important that surveillance systems bemodified to
collect data to inform our understanding of this issue.
Respiratory distress and ARDS. Respiratory distress,

observed in up to 25% of adults and 40% of children with
severe P. falciparum malaria, has several causes, including
severe anemia,metabolic acidosis, cytoadherence of infected
erythrocytes in pulmonary vasculature, and coinfections with
pneumonia-causing pathogens.37 The clinical spectrum var-
ies frommild upper respiratory symptoms to acute lung injury
and fatal ARDS. Acute respiratory distress syndrome is rare in
young childrenwithmalaria but occurs in 5–25%of adults and
29% of pregnant women with severe P. falciparum infections,
and less commonlywithP. vivaxmalaria.37 In bothmalaria and
COVID-19,ARDS is linked to inflammatorycytokine–mediated
increased capillary permeability or endothelial damage, which
results in major alveolar damage.38–40 Given this situation,
Plasmodium spp.–SARS-CoV-2 coinfections may result in
particularly rapid deterioration, with a poor prognosis. As the
inflammatory-mediated alveolar damage in malaria-induced

ARDS progresses even after treatment and parasite clear-
ance,37 coinfected individuals may be prone to severe COVID-19.
Because bothmalaria andCOVID-19 can lead to similar clinical
manifestations, including fever and respiratory symptoms, one
or the other may be overlooked in a differential diagnosis of
respiratory distress, leading to increased fatalities. As SARS-
CoV-2 transmission increases in LMICs, particularly in Africa
and India, clinicians should keep this in mind. In addition, doc-
umenting the frequency, distribution, and outcomes of these
coinfections is important.
Anemia. Anemia is highly prevalent in LMICs and results

frommultiple causes. In cross-sectional household surveys in
sub-Saharan Africa, 61%, 33%, and 3% of children younger
than 5 years had any anemia, moderate anemia, and severe
anemia, respectively.13 More than one-fifth of children with
malaria develop SMA, with a CFR of 8.4%.41 Whereas the he-
matologic sequelae of COVID-19 are still being elucidated,
a meta-analysis describing 1,210 COVID-19 patients from
four studies found that hemoglobinvalueswere0.71g/dL (95%
CI: 0.59–0.83 g/dL) lower in individuals with severe disease
versus milder disease.42 Whether lower hemoglobin is a risk
factor or a sequela of severe COVID-19 disease is unknown.
However, becauseof limited reserves, evensmall perturbations
in oxygen-carrying capacity in individuals with preexisting
malarial anemia may result in insufficient tissue oxygenation in
the midst of COVID-19–induced respiratory failure.
Pro-coagulant state. Numerous viral infections, including

SARS-CoV-2, induce a pro-coagulant state through the in-
duction of tissue factor expression, endothelial dysfunction,
von Willebrand factor elevation, and Toll-like receptor
activation.43,44 Markers of a hypercoagulable state, including
increased D-dimer and fibrin degradation product levels, and
prolonged prothrombin time are associated with a poor
prognosis.45 Clinically, the hypercoagulable state manifests
with a high rate of venous thromboembolism and arterial
thrombotic complications (including pulmonary embolism and
stroke).46,47 COVID-19 patients are at risk for developing dis-
seminated intravascular coagulation (DIC),45,48 and autopsy
findings have included both pulmonary hemorrhage and
thrombosis.49 Thrombocytopenia is another potential feature of
COVID-19, thought to be due to excessive activation of the co-
agulation cascade, leading toplatelet activation andsubsequent
consumption,44 and is associated with worse outcomes.50

Malaria is also associated with a pro-coagulant state, with
activationof the coagulation cascade,mediatedbyTNF-alpha
and IL-6, proportional to disease severity.51 Whereas micro-
thrombotic complications are most commonly described,
thrombosis of large vessels, including cerebral venous throm-
bosis, and pulmonary embolism have been described.52,53

Thrombocytopenia develops in 60–80% of malaria cases.51

Although bleeding and DIC are rarely seen, occurring only in
severe malarial cases accompanied by coagulopathy,54 they
are associatedwithhighmortality.51 Lysisofactivatedplatelets,
along with tissue factor released from damaged vascular en-
dothelial cells, promotes the pro-coagulant state,54 similar to
the proposed mechanism in COVID-19. Thus, Plasmodium
spp.–SARS-CoV-2 coinfection could lead to even greater de-
greesofcoagulopathyandmoreseveredisease thanwitheither
infection alone.
Potential interactions between NTDs and COVID-19.

Helminths, including stool-transmitted helminths (STH),
schistosomes, and filariae, typically push the immune system
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toward anti-inflammatory Th2 pathways through a variety of
regulatory mechanisms.55,56 Protozoal parasites, such as try-
panosomesorLeishmaniaspp., aremore likely to induceaTh1,
pro-inflammatory response. However, there are many devia-
tions from this characterization. Some helminths induce Th1
responses in some stages of the life cycle (e.g., microfilariae of
filarial parasites or schistosome eggs), resulting in symptom-
atic disease, but Th2 responses in other stages (e.g., adults of
both filarial parasites and schistosomes). The downregulation
of the inflammatory response associated with helminths may
reduce the development of immunity or response to vaccines,
decrease inflammation associated with autoimmune diseases,
reduce the ability to control Mycobacterium tuberculosis and
Mycobacterium leprae coinfections, and reduce the severity of
malarial coinfection. The pro-inflammatory effects of some pro-
tozoal infections may worsen the severity of some, but not all,
viral infections.55,57 In addition, polyparasitism is quite common,
and the overall impact on inflammation depends on the se-
quence of infections and burden of each.58 Thus, coinfection
with parasitic NTDs could result in altered risks and severity of
clinical manifestations of SARS-CoV-2 infection, with the po-
tential for decreased development of immunity with increased
viral loads.
The severity of COVID-19 has been associated with under-

lying health conditions that usually occur with advancing age.
Several NTDs, if left untreated, can result in chronic sequelae
in much younger populations. For example, because acute
Trypanosomacruzi infection is typically asymptomatic or results
in a mild, self-limited illness, it is frequently undetected and left
untreated. Yet, in young or middle adulthood, 20–30% of per-
sons chronically infected with T. cruzi develop cardiac mani-
festations, commonlyacomplex, dilatedcardiomyopathy.59 For
these individuals, coinfection with SARS-CoV-2 could be life-
threatening. STH infections may result in anemia60; if, as de-
scribed previously, anemia predisposes individuals to more
severe outcomes, then coinfection of STHsandSARS-CoV-2 in
children and pregnant women could be problematic.
Malnutrition and COVID-19. Chronic malnutrition is as-

sociated with both malaria61 and NTDs,62 and is relatively
common among children in sub-Saharan Africa as well as
parts of Latin America and Asia. Prealbumin, a marker for
protein malnutrition,63 was found to be lower on admission in
patients with COVID-19 who developed ARDS than on those
whodid not.64 Although lower prealbuminmay be amarker for
more severe disease, immunosuppression associated with
undernutrition preceding infection with SARS-CoV-2 could
exacerbate the severity of COVID-19.65,66 Undernutrition is
thought to have led to excessmortality with both the 1918 and
H1N1 influenza pandemics.67,68 Given relatively high rates of
undernutrition among children in LMICs (12.3%),69 an asso-
ciation between undernutrition and clinical severity of COVID-
19 could increase the proportion of severe illness above
current predictions, particularly among children.

CONCLUSION

Although SARS-CoV-2 has spread globally, our under-
standing of the epidemiology and clinical course of COVID-19
in countries with substantial burdens of malaria and NTDs is
just beginning, in part because community transmission
generally started later in these countries and because testing
for SARS-CoV-2 is limited in most LMICs. Although current

predictive models suggest lower mortality rates in LMICs
than in high-income countries, if coinfections with malaria or
parasitic NTDs increase complications with SARS-CoV-2 in-
fections and there is a shift in the age pattern of comorbidities
to younger ages, then the burden of COVID-19 in LMICs may
be substantially worse than predicted, and potentially higher
than the burden in high-income countries.70 If a shift to a Th2
response is more common, and if that shift provides some
protection from severe disease while reducing long-term im-
munity or increasing the time frame of viral shedding, the ep-
idemiology of COVID-19 in LMICs could be substantially
different from what has been seen elsewhere.
Rapidly developing surveillance platforms to monitor sig-

nals of SARS-CoV-2 coinfection with malaria or other NTDs
will be critical. One early indication of a potential interaction
would be a shift in the age pattern of severe COVID-19, with
higher rates of clinical disease in children than has been ob-
served in China, Europe, or North America. However, more
definitive information on coinfections and outcomes will be
needed to interpret such shifts. Efforts to characterize COVID-
19 cases in LMICs, such as the WHO First Few X cases pro-
tocol,71 and addition of SARS-CoV-2 testing to influenza
sentinel surveillance72 could be expanded, based on local
prevalence of malaria and NTDs, to include testing for malaria
and NTDs. Such additional testing could help determine rates
of coinfection and compare severity of outcomes by infection
status. Additional efforts tomore carefully describe the clinical
impacts of coinfections can follow. These efforts are important
to understanding the potential impact of COVID-19 on LMICs
and for mitigating against the worst outcomes.
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